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INTRODUCTION

The rate of decomposition of an ablative material when exposed to a heat flux may be
modeled by the kinetic rate equation. If it is assumed that the material dimensions remain con-
stant, the rate equation predicts the density of the remaining char as a function of time. The
ablative characteristics of the material are dependent upon both the rate of decomposition and
char density. In order to predict the thermal response of the material, accurate values of the
kinetic paramei:rs over the entire range of decomposition are required for use in the rate equation.
In the case of an ablative material exposed to a solid rocket motor exhaust, the heat flux may
vary widely depending upon the geometry and/or type of motor. Therefore, the effect of the
heating rate on the kinetic parameters must be known as well.

We report here the kinetic parameters for the thermal decomposition of several ablative

materials being considered for shipboard application. These kinetic parameters were determined
by a multiple heating rate thermogravimetric technique developed by Friedman i and later modi-
fied by Henderson, Wiebelt, Tant, and Moore2 to improve accuracy of the kinetic model over the
entire range of decomposition. This modified version of Friedman's method involves dividing the
decomposition into two separate regions. While an average activation energy is determined for
the entire decomposition range, separate pre-exponential factors and apparent orders of reaction
are determined for the two regions of decomposition. For comparison with the value obtained by
Friedman's method,' the activation energy was also determined by the method of Flynn and
Wall.'

THEORY

The kinetic rate equation simply defines the rate of decomposition as the product of a

temperature-dependent term and a weight fraction-dependent term, i.e.

rate = fI (temperature) e f2 (weight fraction) (1)

The temperature-dependent term is generally expressed by Arrhenius' law

f= A exp(- E/RT) (2)

where A = pre-exponential factor (min- 1 )

E = activation energy (cal/gmol)

R = gas constant (1.987 cal/gmol-K)

T = absolute temperature (K)



The form of the weight fraction-dependent term is, in general, chosen to provide a best fit of
experimental data.

FRIEDMAN'S METHOD

Friedman's method was chosen for this application because the kinetic parameters are de-
termined from data obtained over a wide range of heating rates. Clearly, parameters obtained
over a range of heating rates may be applied with greater confidence at the heating rates to which
ablative materials are subjected. Another advantage of this method is that the weight fraction-
dependent term is an arbitrary function whose form is determined directly by experi.-nent.

The rate equation proposed by Friedman is

- I/W0 x dW/dt = Af (W/W 0) exp(-E/RT) (3)

where W = instantaneous weight of material (mg)

W0 = original weight of material (mg)

dW/dt = rate of weight loss (mg/min)

f(W/W 0 ) = undefined function of weight

Taking the natural logarithm of both sides of Equation (3) results in

In[-I/W0 xdW/dtl = ln(Af(W/W0 )] -E/RT (4)

A linear equation may be fit to In[- I/W0 x dW/dt] as a function of I/T at constant parametric
values of W/W0 . These equations will have slopes of -E/R, and each intercept is the value of
lnlAf(W/Wo)1 at the parametric value of W/W 0 . The weight fraction-dependent term, f(W/W 0 ),
is then defined as

f(W/W 0 ) [(W- Wf)/W0 1 n (5)

where n = order of reaction

Wf = final weight of charred material (mg)

Finally, multiplying Equation (5) by A and taking the natural logarithm results in

ln[Af(W/W0 )l =n A + n ln[(W-Wf)/W0
1  (6)
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The final weight fraction, Wf/Wo, is determined from the original thermograms. Since
ln[Af(W/W0 )] is known for various W/W0 ratios, Equation (6) can be used to determine
values of A and n. As mentioned previously, Henderson et al. 2 modified this method to improve
the correlation of the kinetic model and experimental data. The weight loss curve was separated
into two regions, and separate pre-exponential factors and apparent orders of reaction were deter-
mined for each region. A single average activation energy was determined for the entire weight

loss curve.

FLYNN AND WALL'S METHOD

The method of Flynn and Wall 3 may be used to determine the activation energy utilizing
thermograms obtained at several heating rates. The activation energy is given by

E - (R/C) d(log f)/d(1/T) (7)

where j3 = heating rate (K/min)

C = C(E/RT)

If lI/T versus log 3 is plotted at several weight loss fractions, a series of straight lines with
slope A(log )/A(l/T) results. The activation energy can then be calculated by Equation (7) using
the slope and the appropriate value of C. Since C is a function of E/RT, the calculation of E is an
iterative process. Values of C over the range 7 < E/RT < 60 are available from a table constructed
by Flynn and Wall. 3 The variation of C over this range is approximately ±3 percent. The simplicity
of this method makes its use for the present application quite attractive.

EXPERIMENTAL

MATERIALS

The four ablative materials studied were supplied by Fiberite Corp. and Fiber Materials,
Inc. As shown in Table 1, these materials consisted of either a phenol-formaldehyde or acrylo-
nitrile-butadiene resin with specified amounts of glass or fiberglass added as filler.

The materials were converted to powder form by machining and were then filtered through a
No. 20 sieve. They were stored overnight in a vacuum dessicator maintained at 35°C to remove

traces of water.
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Table 1. Composition of Materials Tested

Material Composition (percent)

Fiberite Fiberite Fiber Materials, Fiber Materials,
Corp. Corp. Inc. Inc.

Contents MXBE-350 MXB-360 FR-I FR-2

Glass powder (SiO 2 ) 15.5 14.5 - -

Glass fiber (SiO 2 ) - - 42.0

Fiberglass 41.0 59.0 - -

Carbon - - - 40.0

Total filler content 56.5 73.5 42.0 40.0

Pheno-formaldehyde resin - 26.5 58.0 60.0

Acrylonitrile-butadiene resin 43.5 - - -

APPARATUS AND PROCEDURE

A Perkin-Elmer TGS-2 Thermogravimetric System was used, with temperature control
provided by a Perkin-Elmer System 4 Microprocessor Controller. The sample temperature was
measured with a chromel-alumel thermocouple, which was calibrated with a set of five Curie
standards in the temperature range of interest at each heating rate used.4

In order to reduce temperature gradients in the material and to ensure uniform heating, small
weights of a powdered form of the materials were used. Samples weighing 7.5 ± 0.5 mg were
heated from 40 to 950°C using heating rates of 10, 20, 40, 80, 100, and 160*C/min. Both the
percentage of initial weight and the rate of weight loss were plotted directly as a function of
temperature. The samples were maintained in a nitrogen atmosphere throughout the experiment.
When the programmed temperature scan reached 950'C, the purge gas was automatically switched
to oxygen to thermo-oxidatively degrade the remaining resin. To verify the initial weight fraction
of filler, the temperature was held at 950°C until the resin had completely degraded.

ir
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RESU LTS

In the original thermograms, both the fraction of weight remaining and the derivative of
weight loss were plotted as a function of temperature. These data were digitized at 0.01 intervals
of the fraction of weight remaining and the experimental temperatures were corrected using the
Curie standard temperature calibration. The thermograms were then reproduced from these data.
Figure 1 shows the fraction of weight remaining as a function of temperature for each material
at each heating rate. Similarly, Figure 2 shows the rate of weight loss as a function of temperature
for each material at each heating rate. The digitized data for all four materials are given in the
Appendix.

Plots of in[- I/W0 x dW/dt] versus l/T are shown in Figure 3 for each of the four materials.
The slope of each line was determined from a least squares fit of the data. and the corresponding
activation energy and intercept In(Af(W/W0 )] at each value of weight loss were then determined.
These data are shown in Figure 4 for each material. Plots of ln[Af(W/W0 )] versus ln[(W-Wf)/W 0 I
are shown in Figure 5 for each material. Figure 5 clearly illustrates the separation of the decom-
position into two regions and the corresponding least squares fit for each region. A separate pre-
exponential factor and reacwLc." order was determined for each of these two regions utilizing
Equation (6). The average activation energies determined from Figure 4 were used for both regions.
Using Flynn and Wall's method and the plots of log 3 versus I/T shown in Figure 6, average
activation energies were determined for each of the four materials. A summary of the calculated
kinetic parameters for the four materials is given in Table 2.

The kinetic parameters for the thermal decomposition of the four ablative materials were
used in Equation (3) to calculate the fraction of weight remaining as a function of temperature
at each heating rate. Each set of parameters was applied to that portion of the weight loss curve
from which it was determin-d. The results of these calculations at 10 and 160°C/min are shown
along with experimental data in Figure 7 for comparison. The average error, standard deviation
of errors, and the 95-percent confidence interval were calculated for the experimental versus
calculated points for each material, and these results are presented in Table 3.
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Table 2. Results of Thermogravimetric Analysis

Range
of Eavit (kcal/gm-mole)Material Wf/W o  W/W 0  Friedman Flynn & Wall A(min-1) n W/W o

Fiberite 4.07 x 1046 55.40 > 0.94
0.660 0.99-0.73 52.11 50.22MXBE-350 7.77 x 1 " 3.81 < 0.94

Fiberite 2.74 ) 1038 22.10 >0.930.840 0.98 -0.87 56.87 53.70
MXB-360 1.15 x 1023 7.60 <0.93

Fiber materials 3.05 x 1094 92.43 > 0.84
0.650 0.99 -0.67 94.62 88.49 5.65 > 0.84

FR-I1 5.65 x 1031 11.88 < 0.84

Fiber materials 1.71 x 10" 59.50 > 0.89
0.675 0.99 -0.83 49.05 45.38 2.00 x 1028 19.10 <0.89FR-2 20 081.0 <08

Table 3. Statistical Analysis of Errors in Computed Versus Experimental W/W 0

Average Standard Number
Error Deviation 95-Percent of

Material (percent ) (percent) Confidence Interval Data Points

MXBE-350 1.36 1.41 1.17- 1.55 162

MXB-360 0.18 0.48 0.08-0.29 72

FR-i 0.50 1.22 0.38-0.72 198

FR-2 1.07 2.30 0.74-1.41 90
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DISCUSSION

As can be seen from the calculated versus experimental weight loss curves presented in
Figure 7, the model piedicts the weight loss with reasonable accuracy. The error in predicting the
weight loss curves for MXBE-350, FR-i, and FR-2 could likely be reduced by separating the
reaction into more than two regions, and determining a set of kinetic parameters for each region.
Improving the fit of the lines to the data in Figure 5 leads to kinetic parameters that better predict
the weight loss curve. The poor correlation of the calculated versus experimental weight loss curves

at high temperatures for FR-2 in Figure 7d is the result of not utilizing experimentally deduced
kinetic parameters in this region. Application of Friedman's method in this region led to negative
activation energies, a result that is clearly not realistic in view of the physical meaning of activation
energy. Therefore, the kinetic parameters determined from experimental data at lower
temperatures and involving positive activation energies were used in the high-temperature region.
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